Math 3063	Abstract Algebra	Project 1	Name:
	Prof. Paul Bailey	January 23, 2009	

Due Friday, January 30, 2009.

Copy the statement of the problem on a piece of $8\frac{1}{2} \times 11$ piece of blank computer paper, and write the solution underneath. Write neatly. Mathematics should always be written in grammatically correct English, in complete sentences.

Problem 1. Use induction to prove that, for all $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Problem 2. Let m = 71 and n = 528. Find $x, y, d \in \mathbb{Z}$ such that mx + ny = d and $d = \operatorname{gcd}(m, n)$.

Problem 3. Let $a, b, c \in \mathbb{Z}$ be positive integers. Show that

- (a) $a \mid a;$
- (b) $a \mid b$ and $b \mid a$ implies a = b;
- (c) $a \mid b$ and $b \mid c$ implies $a \mid c$.

Problem 4. Let $a, b, c \in \mathbb{Z}$ be positive integers. Show that gcd(a, bc) = 1 if and only if gcd(a, b) = 1 and gcd(a, c) = 1.

Problem 5. Find the additive order of $\overline{6}$, $\overline{11}$, $\overline{18}$, and $\overline{28}$ in \mathbb{Z}_{36} .

Problem 6. Find the multiplicative order of $\overline{10}$ in \mathbb{Z}_{21}^* .

Problem 7. Solve the equation $\overline{17}x = \overline{23}$ in \mathbb{Z}_{71} .

Problem 8. Solve the equation $x^2 - \overline{5}x - \overline{2} = \overline{0}$ in \mathbb{Z}_{11} .